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Sesquiterpene lactones are the active components of a variety of medicinal plants from the Asteraceae familiy.
They possess biological activities such as the inhibition of NF-κB and the release inhibition of the vasoactive
serotonin. On the basis of a data set of 54 SLs, we report the development of a quantitative model for the
prediction of serotonin release inhibition. Comparing this model with a previous investigation of the target
NF-κB, structural features necessary for specific compounds could be acquired. Atomic properties encoded
by radial distribution function and molecular surface potentials encoded by autocorrelation were used as
descriptors. Whereas some descriptors describe the structural requirements for both activities, other descriptors
can be used to decide whether an SL is more active to NF-κB or to serotonin release. Again, counter
propagation neural networks proved to be a valuable tool to establish structure–activity relationships that
are necessary for the search for and optimization of lead structures.

Introduction

Sesquiterpene lactones (SLs)a belong to one of the largest
groups of secondary plant metabolites and are the active
components of many medicinal plants from the Asteraceae
family. They possess a wide variety of biological activities1,2

such as the inhibition of the central transcription factor NF-κB3–5

and the inhibition of the release of the vasoactive serotonin.6

NF-κB is a central regulator of many genes involved in
immunological responses. Because of this pivotal role, NF-κB
and the signaling pathways that regulate its activity have become
a focal point for intense drug discovery.7–11 We have recently
reported that SLs can serve as leads for the development of
potent NF-κB inhibitors and that a counterpropagation neural
network (CPGNN) can serve as a valuable tool for selecting
these leads.12 Our investigation strengthened the importance of
the R,�-unsaturated carbonyl structures and the hydrogen
binding potential (HBP) projected on the surface for the NF-
κB inihibitory activity.

Serotonin (5-hydroxytryptamine, 5-HT) is believed to play
roles both as a vasoactive agent and neurotransmitter in the
etiology of migraine.6,13 Preparations of Tanacetum parthenium
(L.) SCHULTZ BIP., the so-called feverfew, have been clinically
proven to reduce the incidence and severity of migraine
headaches.13,14 The SL parthenolide is discussed as its main
active secondary metabolite, as it inhibits the release of serotonin
in bovine platelets.15 Serotonin release was also inhibited by
helenalin in human platelets.16 Previously, a SAR study includ-

ing 54 structurally different SLs was undertaken on the same
topic.6 It was found that total hydrophobicity and steric bulk
do not correlate well with the inhibitory activity on serotonin
release but that steric bulk and electrostatic potential at particular
points on the skeleton affect the activity.

As a common molecular mechanism, the reaction of the
exomethylene group of the γ-lactone ring with nucleophiles,
especially with the sulfhydryl group of cysteine, in a Michael-
type addition is discussed.17 This could be shown for helenalin
by alkylation of cysteine 38 in the p65/NF-κB subunit.3,18

Because of the reactive R,�-unsaturated carbonyl structures
present in SLs, they have often been considered as unspecific
substances that launch a “sweeping attack” on all possible targets
without any specificity, a property contradictory for any drug
development. The question arises if selection of SLs with
specific activities is possible. Here we demonstrate that CPGNN
can be used to solve this necessary task.

CPGNN is an artificial neural network (ANN). These
computational models are based on the simplified concept of
the brain, in which nodes, called neurons, are interconnected
in a network-like structure.19 Self-organizing networks, intro-
duced by Kohonen in the 1980s, project objects from a
multidimensional space into a lower-dimensionality space,
usually into a 2D plane.20,21 Thereby, the topology of the input
space is preserved in the projection. Counterpropagation net-
works utilize the Kohonen algorithm but consider the investi-
gated property during the training process. Because high-
dimensional values of a 3D structure representation shall be
used as descriptors, CPGNN is a suitable option.22

On the basis of the above-mentioned data set of 54 SLs,6 we
report the development of a QSAR model to predict the
serotonin release inhibitiory activity based on CPGNN. This
data set includes SLs of four different skeletal types: 18
germacranolides, 17 eudesmanolides, 8 guaianolides, and 11
pseudoguaianolides exhibiting IC50 values between 1.78 and
>624.2 µM (Figure 6, Table 7). Comparison of this model with
a previous investigation that produced a structural model for
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the NF-κB activity of SLs12 allows the specification of structural
features necessary for either serotonin or NF-κB activity.

Results and Discussion

Correlation of Inhibitory Activity of SLs on NF-KB
and Serotonin Release. To gain first insights into the specificity
of SLs, six of these natural compounds that were part of the
data set from the NF-κB QSAR study12 as well as of the data
set from the serotonin release QSAR study6 were chosen and
the respective activity was compared. No correlation between
these two activities could be observed (Figure 1; correlation
coefficient of R2 ) 0.04 for linear regression, n ) 6). Although
the overlapping of the two data sets is poor, this is a first clue
for a certain specificity of the SLs for the two targets. In contrast,
inhibition of NF-κB activity and IL-8 production23 showed a
fairly good correlation (Figure 1; R2 ) 0.79; n ) 23) indicating
that NF-κB is involved in IL-8 biosynthesis. When serotonin
release inhibition and cytotoxicity were correlated in a former
study, no correlation was observed.6

Generation of a Counterpropagation Neural Network. The
54 SLs of the data set comprising compounds with IC50 values
between 1.78 and >624.2 µM were grouped into six activity
classes as described in Experimental Section. Properties were
calculated for each SL including four global molecular proper-
ties, seven atomic properties encoded by radial distribution
function (RDF), and three surface potentials encoded by
autocorrelation (AC) (Table 1). The global properties mean
molecular polarizability (mmPOL) and topological polar surface
area (TPSA) show a good correlation of the normalized
descriptor with the activity classes and were used for further
combinations of vectorial descriptors. The vectors of the atomic
properties and of surface potentials were reduced from 128 to
between 6 and 15 descriptors (see Experimental Section; Table
1). Four (�π, �σ, Rd, qσ) of the seven RDF-coded atomic
properties as well as the AC-coded surfaces MEP and HBP show
a good clustering with satisfying parameters (conflicts < 21%,
occupancy > 77.5%, wrongly clustered neurons < 24.5%). Two
vectors of the selected eight properties (mmPOL, TPSA, �π,
�σ, Rd, qσ, MEP, HBP) were combined with each other, resulting
in 28 combinations from which five (�π + �σ, �π + HBP, �π +
MEP, �π + Rd, �π + qσ) exhibited a good clustering (conflicts
< 12%, occupancy > 81%, wrongly clustered neurons < 22%
in at least two categories). In a final step, the five combinations
were again combined with the selected eight vectors. From these
20 new combinations two (�π + MEP + qσ, �π + qσ + TPSA)
show a good clustering.

From the resulting seven best combinations, the one that
includes �π + MEP + qσ exhibited good values in the quality
categories of clustering, conflicts. and occupancy (Table 2). The
exact composition is given in Table 3; an example of a CPGNN

Figure 1. Correlation between inhibition of NF-κB12 and serotonin
release6 using 6 SLs (top) and inhibition of IL-823 production using
23 SLs (bottom).

Table 1. Global Molecular and Atom Properties and Surfaces Useda

symbol description
dimensionality
after reduction

log P octanol–water partition coefficient 1b

Log s aqueous solubility 1b

mmPOL mean molecular polarizability 1b

TPSA topological polar surface area 1b

rd effective atom polarizability 15c

�LP lone pair electronegativity 11c

�π π-electronegativity 12c

�σ σ-electronegativity 13c

qπ π-charge 10c

qσ σ-charge 12c

qtot total charge 11c

MEP electrostatic potential on the
molecular surface

7d

HBP hydrogen binding potential on the
molecular surface

8d

HPP hydrophobicity potential on the
molecular surface

6d

a All descriptors were calculated by ADRIANA.Code.24 The properties
in bold show a clustering with a low number of conflicts and a sufficient
high occupancy. b Global molecular property, no reduction necessary. c Atom
property, RDF encoded. d Molecular surface property, AC-encoded.

Table 2. Data Characterizing the Best Combinations Using the
Kohonen Neural Networka

combination
wrongly clustered

neurons (%) occupancy (%) conflicts (%)

�π + �σ 21.0 79.5 10.2
�π + HBP 23.0 84.5 8.3
�π + MEP 22.0 80.5 6.5
�π + Rd 18.5 78.0 11.1
�π + qσ 18.5 82.5 13.0
�π + MEP + qσ 20.0 82.0 7.9
�π + Rd + TPSA 14.0 77.0 9.7

a The values are the average of four trainings. The four best values of
each category are in bold letters.

Figure 2. Output map of a toroidal CPGNN with a 1-dimensional
output layer of the best model �π + MEP + qσ. High inhibitory activity
(activity class 1 and 2) is red, activity classes 3 and 4 are orange, and
activity classes 5 and 6 are yellow. The white areas indicate empty
neurons. To illustrate the clustering of the different classes, four toroidal
maps were arranged like tiles to indicate the closed nature of a toroidal
surface.

Table 3. Descriptors of the Best Model Using CPGNN

property distances (Å)

�π 1.4; 1.5; 2.3; 3.0; 3.7; 4.4; 4.5; 4.6; 4.7; 5.4; 6.0; 6.2
MEP 0.2; 2.6; 3.3; 3.9; 4.4; 7.5; 9.2
qσ 1.2; 1.4; 1.5; 1.7; 1.8; 2.3; 2.6; 3.0; 3.1; 4.7; 7.5; 10.8
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output map is shown in Figure 2. The SLs with the lowest
activity values (activity classes 5 and 6) build an extended
cluster. Only one neuron with low activity is not included in
this extended cluster, and it is well separated from the other
activity classes. The highly active SLs (activity classes 1 and
2) form a band across the whole map that is interrupted only
by two empty neurons. The SLs with intermediate activities
(activity classes 3 and 4) do not build an isolated cluster; they
encircle the neurons of the highly active SLs.

Evaluation of the Best CPGNN. An internal validation by
10-fold cross-validation revealed that a correct prediction of the
serotonin release inhibition was possible with 85.2% accuracy
(Table 4). The eight wrongly predicted SLs are summarized in
Table 5. The SLs 32 and 33 as well as 44 and 47 are pairs that
predict each other. Interestingly, a wrong prediction of SLs 1
and 23 is also connected with the predicitions for the SLs 32
and 33.

Structural Information of Descriptors Used for Seroto-
nin Release Inhibition. The best model includes descriptors
based on π-electronegativity (�π) and σ-charge (qσ) of the
atoms and on the MEP projected onto the surface (Table 3).
Interestingly, �π is present in each combination selected
during the search for the best model. For the atomic property
�π high values of the RDF code are associated with a high
serotonin release inhibition. The RDF vector of �π has values
greater than 0 only for atoms with π-electrons, i.e., atoms in
multiple bonds and atoms with free electron pairs. Distances
of 1.4 and 1.5 Å occur with atoms that are singly bonded to
atoms with positive values for �π. Such substructures can be
found, for example, in the lactone ring with an exomethylene
group. Atoms connected by a double bond are not contained
in this structural feature because they possess shorter
distances of about 1.2 Å. The distance of 2.3 Å is found

between atoms separated by two bonds (Figure 3a). A
distance of 3.0 Å is found between atoms separated by three
bonds if these atoms are brought together, for example, by
incorporation into rings (Figure 3b). A distance of 3.7 Å
occurs between atoms separated by three bonds if these are
contained in open chain sequences (Figure 3c). The distance
of 2.3 Å is mostly found within γ-lactone rings, whereas
distances of 3.0 and 3.7 Å occur in structure elements, which
do not comprise R,�-unsaturated structures (Figure 3). It is
noteworthy that four distances in the range of 4.4-4.7 Å
are included in the best model. All of these distances mostly
appear between hydroxy, carboxy, and ester groups adjacent
to the exomethylene group of the lactone ring on one side
and atoms of the γ-lactone ring on the other side (Figure
3d). Whereas the individual atom distances between 4.4 and
4.7 Å exhibit only a marginal correlation of high RDF values

Table 4. Confusion Matrix Based on a 10-Fold Cross-Validation of the
Best Model �π + MEP + qσ using CPGNNc

a PAC, predicted activity class. b EAC, experimental activity class. c nfalse

is the number of wrongly predicted SLs.

Table 5. Wrongly Predicted SLs by Validation

activity class

SL experimental predicted
SLs involved in
conflict neurons

1 1 6 33
4 4 6 34
18 3 1 1
23 4 6 32
32 6 4 33
33 4 6 32
44 1 4 47
47 4 1 44

Figure 3. Typical SL structure elements with atomic distances of (a)
2.3, (b) 3.0, (c) 3.7, and (d) 4.4-4.7 Å. The arrows show distances
with RDF values of �π different from zero. R’s in some structure
elements are connected and build a six-membered or larger ring.

Figure 4. Distribution of the sum of the RDF-encoded property �π at
atomic distances of 4.4-4.7 Å within the activity classes 1-6. Based
on a value of 200, an almost complete differentiation between activity
classes 1-3 and 4-6 is possible. Only 3 of 27 SLs (11.1%) of activity
classes 1-3 and 2 of 27 SLs (7.4%) of activity classes 3-6 would be
falsely classified using the sum of these four RDF values as a descriptor.
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and high serotonin release inhibitory activity, a high cor-
relation can be observed for the sum of these four RDF
values:

∑
4.4ere4.7

gxπ
(r)

and the inhibitory activity (Figure 4). The SLs 1 and 44, which
show unusual low values of

∑
4.4ere4.7

gxπ
(r)

for activity class 1, are also wrongly predicted during the
validation (Table 5). This demonstrates the significance of the
four descriptors for a correct classfication.

Twelve distances from the RDF-encoded atom property qσ
were included in our model. The qσ values of an atom depend
on the atom type, the hybridization, and the neighboring atoms.
Oxygen atoms in the SLs of our data set show values between
-0.25 and -0.39 e. Hydrogen atoms possess positive values
lower than 0.08 e, but hydrogen atoms have values of about
0.21 e in hydroxyl groups and values of about 0.11 e in aldehyde
groups. Carbonyl atoms in carbonyl, ester, and hydroxyl groups

show positive values of up to +0.30 e; other carbonyl atoms
have values between -0.08 and +0.02 e. Active SLs can be
characterized by both highly positive or highly negative RDF
values depending on the considered distances. With the atom
distances of 1.2, 1.4, and 1.5 Å, strongly negative values
correlate with a high activity. As mentioned above, a distance
of 1.2 Å describes the distance of two atoms connected by
double bonds. Considering the qπ values, numerous CdO double
bonds (e.g., ketone, aldehyde, ester, lactone) seems to be
associated with a high activity. Strongly negative RDF values
of the distances of 1.4 and 1.5 Å, which were also used by the
atomic property �π, can be found within numerous functional
groups, such as in lactones, acids, esters, etc. A correlation
between high RDF values and high activity can be observed
with the distances of 1.7 and 1.8 Å, as well as for a distance of
2.3 Å. The values of 1.7 and 1.8 Å are the distances between
geminal bonded hydrogen atoms. High qσ charges and therefore
high positive RDF values are shown for hydrogen atoms bonded
to sp2-hybridized carbon atoms, such as in the exomethylene
group of the γ-lactone. The same behavior is shown by carbon
atoms with strongly electronegative groups, such as with oxygen
or chlorine atoms. As described above (Figure 3a), distances

Figure 5. MEP projected onto the surface (b-e) and the corresponding AC curves (a) of four different SLs.

Table 6. Estimation of the Power of Two CPGNN Models for Prediction of NF-κB Inhibitory Activity and for Serotonin Release Inhibition of SLs (%)a

data set

CPGNN model NF-κB serotonin

NF-κB occupancy 80.0 conflicts 5.0 occupancy 86.0 conflicts 16.0
wrongly clustered 18.0 correct predicted 80.6 wrongly clustered 30.0 correct predicted 64.8

serotonin occupancy 52.5 conflicts 50.4 occupancy 82.0 conflicts 7.9
wrongly clustered 30.9 correct predicted 71.8 wrongly clustered 20.0 correct predicted 85.2

a CPGNN model serotonin is the best model evaluated in this paper; CPGNN model NF-κB was developed in Wagner et al.12 The estimation include
occupancy, conflicts, wrongly clustered neurons and correct predicted SLs. The values demonstrate that the NF-κB model is not suitable for the use of the
serotonin release activity and vice versa.
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of 2.3 Å are found within lactones, ester, and carboxyl groups.
Thereby, only the product of the qσ values of both oxygen atoms
contributes to the positive RDF value. All other distances yield
negative or small positive values. Similar to the �π descriptors,
a distance of 3.0 Å was also used within the qπ descriptors.

Additionally, a distance of 3.1 Å was added. Some active
substances show highly positive values. The same structure
elements as within the �π descriptors at 3.0 Å contribute to the
RDF value, but not all distances result in positive RDF values
because qπ charges can have positive or negative values. The
same observation can be made for the distance of 4.7 Å, which
is also used by the �π descriptors. The used distance of 10.8 Å
seems to be a standard measure for the size of the molecules.
No inactive substance (activity class 4-6) shows an RDF value
different from zero and 0.70 after normalization, respectively,
whereas 67% of the active compounds (activity class 1-3) show
values different from zero and 0.70 after normalization,
respectively, which means that the maximal extension of the
molecule is not smaller than 10.8 Å. This is only possible if
space-filling side chains are present in the molecule.

Seven distances of the AC-encoded MEP projected onto the
surface are part of the best model. The calculation of the
potential of one surface point is based on the summation of σ
charges of the surrounded atoms regarding the distance between
atom and surface points. Therefore, positive and negative values
are possible for the σ values as well as for the AC-encoded
values. Some typical AC curves are presented in Figure 5a.
Positive values dominate up to a distance of 3.5-5 Å, followed
by a range of negative AC values. For higher distances the
values of the AC of the MEP tend to go to zero, in a few cases
even giving slightly positive values again. How often the curve
changes between positive and negative values depends on the
number of continuous areas with positive and negative MEP.
If only one area exists with a negative potential, the AC value
is typically positive for a distance up to 5 Å, because pairs of
points with potentials of the same algebraic sign are dominant
up to this distance. For higher distances, pairs of points with
potentials of different algebraic signs are dominant. The AC
curves show higher positive and negative values, if the surface
area with negative potential is larger (Figure 5b and d). If a
substance possesses two or more surface areas with a negative
potential, additional positive and/or negative amplitudes of the
AC curve are monitored (Figure 5b, c, and e). A correlation of
low AC values and of high activity can be observed with
distances of 0.2, 2.6, 3.3, 3.9, and 4.4 Å. Because adjoining
points were regarded at a distance of 0.2 Å, this distance is a
measure for the size of the molecule and for the length of the
border between positive and negative surface potentials: the
longer the border, the lower the AC values. Low AC values
occur for the distances 2.6-4.4 Å if the first positive part of
the AC curve is narrow and soon pass over to negative values.
As already mentioned, therefore a few small separated areas
with negative potentials are necessary. Consequently, a high
activity correlates with structures having several functional
groups containing oxygen atoms. In contrast to the distances
mentioned above, high AC values correlate with a high activity
at the distances of 7.5 and 9.2 Å. The AC values are high, if
the AC curve passes over the zero line two or three times, that
is, if several well-separated groups with oxygen atoms are
present (Figure 5).

Differences and Similarities of Structural Features Es-
sential for High Activities. The best model for the prediction
of the serotonin release inhibitory activity includes descriptors
based on the atomic properties �π and qσ, as well as on the
MEP. Remarkably, the atomic property �π was also used in a
model for the NF-κB inhibitory activity of SLs, sometimes even
with the same distance. Furthermore, the NF-κB model includes
the surface potential HBP.12

Table 7. List of Investigated SLs, Their Serotonin Release Inhibitory
Activity, and Their Activity Class6

no. name IC50 (µM) activity class

I. Germacranolides

1 parthenolide 3.03 1
2 11�,13-dihydro-parthenolide >399.5 6
3 1,10-epoxy-11�,13-dihydro-

parthenolide
>413.0 6

4 1,10-dihydro-parthenolide 40.58 4
5 stizolicin 5.82 2
6 1,10-epoxy-costunolide 121.3 5
7 ursiniolide A 1.78 1
8 ursiniolide B 5.30 2
9 salonitenolide 10.15 3
10 cnicin 3.52 1
11 alatolide 5.77 2
12 glaucolide A 20.92 3
13 cinerenin 3.52 1
14 cinerenin acetate 2.04 1
15 Schkuhriolide 277.7 5
16 melampodin A 4.68 1
17 enhydrin 8.76 2
18 tatridin B 26.97 3

II. Eudesmanolides

19 reynosin 271.1 5
20 11�,13-dihydro-reynosin >209.7 5
21 reynosin-8�-O-epoxyangelate 10.12 3
22 reynosin-8�-O-2,3-dihydro-2-

methylbutyrate
9.52 2

23 santamarin 84.93 4
24 11�,13-dihydro-santamarin >199.7 5
25 santamarin-8�-O-epoxyangelate 7.09 2
26 santamarin-8�-O-(2-hydroxyethyl)-

acrylate
26.73 3

27 3,4-cis-R-epoxy-8�-epoxyangeloyloxy-
santamarin

17.73 3

28 1�-hydroxy-8�-epoxyangeloyloxy-
arbusculin B

6.66 2

29 R-santonin >568.4 6
30 vachanic acid >614.2 6
31 vachanic acid methylester 201.2 5
32 iso-alantolacton >516.2 6
33 asperilin 57.62 4
34 pulchellin C >416.2 6
35 telekin >563.8 6

III. Guaianolides

36 grossheimin 22.18 3
37 3-oxo-grandolide >454.0 6
38 8-epi-iso-lippidiol >488.1 6
39 15-deoxy-repin 6.32 2
40 repin 9.24 2
41 centaurepensin 6.06 2
42 artecanin >134.7 5
43 xerantholide 101.4 5

IV. Pseudoguaianolides

44 helenalin 4.28 1
45 linifolin A 11.44 3
46 tenulin 361.3 6
47 6R-hydroxy-2,3-dihydro-aromaticin 60.08 4
48 geigerinin 73.43 4
49 burrodin 251.4 5
50 inuchinenolide C 33.47 3
51 parthenin 129.3 5
52 coronopilin 248.9 5
53 confertiflorin 8.88 2
54 psilostachyin A 44.06 4
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To test whether the descriptors of both models can be
exchanged with each other, the descriptors used in the NF-κB
models were calculated for the serotonin data set. Whether these
descriptors can be used for the prediction of the serotonin release
inhibition was checked in two different ways. At first, a 10-

fold cross validation was performed. Furthermore, the usability
was estimated by considering conflicts, clustering, and output
maps. The same procedure was done vice versa: the descriptors
of the serotonin models were used for the NF-κB data set to
predict the NF-κB inhibitory activity. Both experiments show

Figure 6. Structures of the investigated sesquiterpene lactones representing four structural classes: gemacranolides (1–18), eudesmanolides (19–35),
guaianolides (36–43), and pseudoguaianolides (44–54).
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that the descriptors of one model perform poorly in predicting
the other activity (Table 6). This may be a further clue for a
certain specificity of SLs.

Interestingly the descriptors based on the distances of 1.4 and
1.5 Å of �π were used in both models, in addition to the 2.3 Å
distance in the serotonin and the 3.5 Å distance in the NF-κB
model. The distances 1.4, 1.5, and 2.3 Å of qσ were also used
in the serotonin model. All of these descriptors point to the
involvement of a γ-lactone moiety with an exomethylene group,
which is known to be essential but not sufficient for a high
activity in both targets.6,15–17,25 This structural element can react
with sulfhydryl groups, for example, in cysteine residues by a
Michael addition. Accordingly, evidence had been provided that
cysteine-38 of the NF-κB subunit p65 is alkylated by helenalin.3,5

Similar reactions are also discussed for the molecular mechanism
of serotonin release inhibition, although the exact molecular
target is yet unknown.6,14 Thus, Luo et al.26 selected 39 SLs
from the serotonin data set of Marles et al.6 and used descriptors
based on HOMO and LUMO in their QSAR study. Thereby,
they provided evidence that a reaction between SLs and the
unknown target may be involved in the serotonin release
inhibition.

Moreover, the distances of 4.4 and 4.5 Å of �π are part of
both models. In addition to the distances of 4.6 and 4.7 Å of �π
and 4.7 Å of qσ used in the serotonin model, these descriptors
describe the occurrence of hydroxy, carboxy, and ester groups
adjacent to the exomethylene group of the γ-lactone. These
functional groups are already known to be important for NF-
κB inhibitory activity25 but yet not for the serotonin release
inhibition. The qσ descriptor at an atom distance of 10.8 Å used
in the serotonin model can also be discussed in this context. It
describes the presence of space-filling side chains that are only
present near the exomethylene group of the γ-lactone in our
data set. In summary, an intact γ-lactone with an exomethylene
group and an oxygen group adjacent to this exomethylene group
are essential structural features for both targets.

Besides the γ-lactone system, further R,�-unsaturated struc-
tural features are common in SLs. Whereas the NF-κB model
includes atom distances of the RDF-encoded �π that can be
found within R,�-unsaturated structures (e.g., 2.6, 3.5 Å),2,25

the serotonin model does not use these descriptors. Interestingly,
some SLs not having additional R,�-unsaturated systems (e.g.,
7, 10, 39, 53) show a high serotonin release inhibition. Marles
et. al6 point out that further R,�-unsaturated systems may only
contribute to serotonin activity but may not have a strong impact
on this activity. In contrast, no SL shows a high NF-κB activity
without such a feature.12,25 Furthermore, the presence of R,�-
unsaturated systems, regardless of lactone or cyclopentenone,
is responsible for the cytotoxicity of SLs2,27 and can explain
the missing correlation between serotonin release inhibition and
cytotoxicity.6 In summary, it can be assumed that these structural
elements are not necessary for high serotonin release inhibition
but are needed for high NF-κB inhibition activity.

Both models contain descriptors of an autocorrelation encoded
surface potential. Whereas in the serotonin model descriptors
of the MEP are used, the NF-κB model contains descriptors of
the HBP. Both types of descriptors are not interchangeable, as
then models with low clustering and a high number of conflicts
are obtained (results not shown). Molecular surface properties
describe the interaction of a drug and its protein target necessary
for initial docking of the compound to the protein. Both surface
properties differ with respect to functional groups and the kind
of interactions. MEP is associated with long-range electrostatic
interactions28 and is a valuable and often-used descriptor for

QSAR investigations and drug design.29 Nevertheless, there are
examples that, similar to the NF-κB data set, hydrogen bonding
descriptors yield a better differentiation of active and inactive
substances than MEP descriptors as shown for an hydantoin-
data set with antagonistic activity.30

Conclusion

A QSAR model for the serotonin release inhibition activity
of sesquiterpene lactones based on counterpropagation neural
networks could be developed using 3D structure descriptors of
the atom properties π-electronegativity (�π) and σ-charge (qσ),
as well as of the molecular electrostatic potential projected on
the molecular surface. Comparison of these descriptors with the
ones used in the NF-κB inhibition model previously published12

provided information on the structural prerequisites for both
types of biological activity and enables selection of SLs with
more specific activities. Whereas some descriptors (�π descrip-
tors at atom distances of r ) 1.4, 1.5, 4.4, 4.5 Å) describe the
structural requirements for both types of activities, other
descriptors can be used to decide whether a sesquiterpene lactone
is more active to NF-κB (�π descriptors at atom distances of
r ) 2.6, 3.5 Å; descriptors based on the hydrogen bonding
potential) or to serotonin release (descriptors based on the MEP).
This model has also the advantage to exclude structural features
relevant for cytotoxic activities when looking for serotonin
release inhibitors. This study shows that the descriptors used
here, accessible with ADRIANA-Code,24 have a clear structural
and physicochemical basis that makes them amenable to
interpretation and allows the development of structural models
for biological activity. Furthermore, it is shown that a counter-
propagation neural network is a valuabe tool in the development
of more specific lead structures.

Experimental Section

Data Set. The SLs of the data set are listed in Table 7, and the
structures are shown in Figure 6. The biological activities are
published in Marles et al.6 The activities were expressed as classes
between 1 and 6 (1, IC50 < 5 µM; 2, 5 µM e IC50 < 10 µM; 3, 10
µM e IC50 < 40 µM; 4, 40 µM e IC50 < 100 µM; 5, 100 µM e
IC50 < 300 µM; 6, 300 µMe IC50). The serotonin release inhibition
was determined by monitoring the serotonin release from bovine
platelets. Therefore, cattle venous blood was treated with [14C]-
serotonin, which was taken up into the platelets by active transport.
A platelet-rich plasma with a standard concentration of platelets
was prepared by centrifugation and dilution. The platelet-rich
plasma was preincubated with the different SLs, and then adenosine
diphosphate was added to stimulate platelet aggregation and
degranulation. After 6 min the reaction was stopped using ice-cold
acetylsalicylic acid. After centrifugation the supernatant was
subjected to scintillation counting.31

Structure Representations. Single low-energy 3D conforma-
tions were generated by CORINA.32 Most of the SLs used show a
rigid ring system (eudesmanolides, guaianolides, pseudoguaiano-
lides, and some germacranolides). The remaining germacranolides
possess a more flexible ring system, but the flexibility is also limited
by double bonds, epoxide rings, and lactone rings.33 Furthermore,
RDF descriptors often remain unaffected by changes of the
conformation. Therefore, one single conformation was regarded as
sufficient. On the basis of the 3D conformation, four global
molecular properties, seven physiochemical atomic properties, and
three surface potentials were calculated (Table 1). ANN needs a
vectorial representation with a fixed number of entries per molecule.
To obtain such a representation for the atomic properties and surface
potentials, a mathematical transformation is necessary. This was
achieved for the atomic properties by using the RDF code. For an
ensemble of atoms, the RDF code can be simplifiedly interpreted
as the probability distribution of the individual interatomic distances
r regarding the respective atomic properties:
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g(r))∑
i)1

N-1

∑
j>i

N

pi pje
-B(r - rij)2

(1)

where pi and pj are the atomic properties of atoms i and j, N is the
number of atoms within the molecule, rij the distance between atoms
i and j, and B is a smoothing factor.34,35

The surface potentials were transformed by the RDF-like
autocorrelation coefficients (AC, eqs 2 and 3):36

A(dl, du))∑
i)1

N

∑
j)i

N

δ(dij, dl, du)pj pi (2)

δ(dij, dl, du)) { 1 ∀ dl < dije du

0 ∀ dije dl ∨ dij > du
(3)

Here, the products of property p for surface point i and j
possessing an Euclidian distance d within the boundaries dl (lower)
and du(upper) were summarized. Both representations are uniform
and invariant under translation and rotations of the molecule. They
were calculated using a sampling rate of 0.1 Å, a vector dimension
of 128 and an interval of 0.0-12.8 Å. All the calculations were
done by ADRIANA.code.24

Reduction of the Number of Descriptors and Preprocessing.
For each atomic property and surface potential a vector with 128
descriptors was obtained, respectively. From these data sets,
descriptors with constant values for all molecules were excluded.
Furthermore, means and standard deviation of a descriptor within
each activity class were calculated and compared using a statistical
t test. Only those descriptors were selected by which the activity
classes could be partially differentiated (t > 2). The selected
descriptors of each data set were tested for linear independence.
All selected and linearly independent descriptors of one data set
were combined to a new data set including between 6 and 15
descriptors (Table 1).

All descriptors of the reduced vectors and the four global
molecular descriptors were normalized between 0 and 1 using a
range scaling procedure:37

xnew,i )
xi -min(x)

max(x)-min(x)
(4)

Generation of Self-Organizing Network. Generation of the
Kohonen networks and the CPGNN was done by SONNIA (Self-
Organizing Neural Network for Information Analysis).38 Both
ANNs consist of an n-dimensional input layer, where n is the
number of the used descriptors. CPGNN also possess an output
layer with the serotonin release inhibitory activity. This additional
layer can be 1-dimensional with activity classes expressed as
numbers from 1 to 6 or 6-dimensional using one output layer for
each activity class (Figure 7).19,20,39

The Kohonen networks were used to search for properties and
combinations thereof important for the inhibitory activity on
serotonin release of SLs. Training of a Kohonen network started
with initializing the neurons. Then a vector (a molecule) of input
variables is presented to all neurons. The neuron was selected that
had weights being closest to the input variables. The weights of
this so-called winning neuron as well as the weights of neurons in
the neighborhood were adjusted to the input vector. The degree of
adaptation decreases with increasing distance to the winning neuron.
The presentation and adaptation were done for each vector, that is,
for each molecule. The whole process was iterated. After training,
the response of the network was calculated for each vector of the
data set. Subsequently, the projection of the data set into the
2-dimensional space was performed by mapping the activity of each
vector into the coordinates of its winning neuron. CPGNN were
used for validation and prediction. The training process was similar
to that one of the Kohonen network, but the weights of the output
layer were also adapted. The results were visualized as 2-dimen-
sional maps by looking at the output map and identifying each
molecule by its class assignment (e.g., Figure 2).

For both ANNs different sizes were tested. The clustering
ability was evaluated by the same quality criteria as described

in the next paragraph. A size of 5 × 10 × n turned out to be the
best. This size was used throughout the study. In order to allow
a direct comparison of all experiments, the topology of both
ANNs was toroidal and the same training parameters were
used.40

Search for Good Clustering Properties. Kohonen networks
were trained with each data set. The resulting output maps were
evaluated according to their clustering abilities. After a visual
evaluation of the maps, correct clustering, occupancy, and
conflicts were calculated. A neuron was classified as correctly
clustered when neurons with the same inhibitory activity
dominated in neighboring neurons. Conflicts occur when mol-
ecules with different inhibitory activity were put in the same
neuron. Neurons including SLs with neighboring activity classes
were not regarded as conflicts. Analogously, decision was done
whether the predicted class of a SL was correct or not in the
validation process.

Validation. A 10-fold cross-validation (CV) was performed
for the best model using CPGNN with a 6-dimensional output
layer (Figure 7).41 The data set was divided by random splitting
into 10 subsets. Nine subsets build the training set, and the
remaining set was used as test set. Nineteen CPGNNs were
calculated on the basis of the training set using random seeds
for initialization. The procedure was repeated until each subset
had been used as test set. Then a new splitting was performed,
and the whole procedure was repeated. Altogether, 19 random
splittings were carried out. Consequently, 3610 (10 × 19 × 19)
CPGNN simulations using 5 × 10 rectangular topography were
the basis for one 10-fold CV.
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